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Life in the Hothouse: How a Living Planet Survives Climate Change, by Melanie Lenart 

(Tucson: University of Arizona Press, 2010). 

 

Notes to accompany the text of the published book. Last updated March 10, 2010.  

 

Introduction 

page 2, within a livable range. 

This so-called homeostasis aspect of Gaia theory is more controversial than some other 

aspects of the theory, and even among its supporters the premise can encompass a range 

of ideas. The ideas expressed here come from Lovelock’s 1979 book Gaia: A New Way of 

Looking at Life, Oxford University Press, Oxford, United Kingdom, 157 pp. 

 

page 3, comparing the world to a machine. 

Abrams, D., 1991. The mechanical and the organic: on the impact of metaphor in science, 

pp. 66–77 in Schneider, S., and Penelope Boston (eds.), Scientists on Gaia, Massachusetts 

Institute of Technology, Cambridge, Mass. 

 

page 4, since the mid-1970s. 

Values for Arizona statewide temperatures (1970–2004) were derived from an online tool 

posted by the Western Regional Climate Center at this Web site: 

http://www.wrcc.dri.edu/cgi-bin/divplot1_form.pl?0202.  

The site can be used to obtain data for the 50 U.S. states for a variety of time frames back 

through 1890. 

 

page 5, Anthony Westerling and colleagues documented. 

Westering, A.L., H.G. Hidalgo, D.R. Cayan, and T.W. Swetnam, 2006. Warming and earlier 

spring increase western U.S. forest wildfire activity. Science 313: 940–943. 

 

page 5, when conditions are right. 

Lenart, M., June 2006. Hurricane intensity rises with sea surface temps. Southwest Climate 

Outlook, June 2006. Monthly publications of the University of Arizona Climate Assessment 

for the Southwest are available through the following link: 

http://www.climas.arizona.edu/pubs.html 

 

page 5, through the early 2000s. 

Alaska’s average annual temperature has increased by about 3.5 degrees Fahrenheit in 30 

years, while its winter temperatures have increased by 6.3 degrees F, according to the 

Alaska Climate Research Center, affiliated with the Geophysical Institute of the University of 

Alaska, Fairbanks. See http://climate.gi.alaska.edu/ClimTrends/Change/TempChange.html 

 

page 6, which accelerates melting. 

Thomas, R., E. Frederick, W. Krabill, S. Manizade, and C. Martin, 2006. Progressive increase 

in ice loss from Greenland. Geophysical Research Letters 33: L10503 (1–4), doi: 

10.1029/2006GL026075. Abdalati, W., W. Krabill, E. Frederick. S. Manizade, C. Martin, J. 

Sonntag, R. Swift, R. Thomas, W. Wright, and J. Yungel, 2001. Outlet glacier and margin 

elevation changes: near-coastal thinning of the Greenland ice sheet. Journal of Geophysical 

Research 106: 33,729–33,741. 

 

page 6, the size of Los Angeles for a year. 

Kerr, R.A., 2006. A worrying trend of less ice, higher seas. Science (News) 311(5768): 

1698–1701. 

 

page 6, researcher Anthony Brazel and colleagues show. 

http://www.wrcc.dri.edu/cgi-bin/divplot1_form.pl?0202
http://www.climas.arizona.edu/pubs.html
http://www.climas.arizona.edu/pubs.html
http://climate.gi.alaska.edu/ClimTrends/Change/TempChange.html
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Brazel, A., N. Selover, R. Vose, and G. Heisler, 2000. The tale of two climates—Baltimore 

and Phoenix urban LTER sites, Climate Research 15: 123–135. 

 

page 6, Phoenix simmering about 20 degrees warmer than nearby rural areas at 

night. 

Personal communication, Joseph Zhender, Arizona State University. Also see Brazel, A.J., 

2003. Future Climate in Central Arizona: Heat and the Role of Urbanization, Consortium for 

the Study of Rapidly Urbanizing Regions Research, vignette no. 2 (September), available 

through the ASU Center for Environmental Studies. The 20-degree Fahrenheit nighttime 

difference refers to Tempe, a municipality within the Phoenix metropolitan area. 

 

page 6, big cities similarly act as heat traps. 

DeGaetano, A.T., and R.J. Allen, 2002. Trends in Twentieth-Century temperature extremes 

across the United States, Journal of Climate 15: 3188–3205. 

 

page 6, heat-related deaths than do their rural counterparts. 

Buechley, R.W., J. Van Bruggen, and L.E. Truppi, 1972. Heat Island = Death Island? 

Environmental Research 5: 85–92. Clark, J.F., 1972. Some effects of the urban structure on 

heat mortality. Environmental Research 5: 93–104. Smoyer, K.E., 1998. A comparative 

analysis of heat waves and associated mortality in St. Louis, Missouri—1980 and 1995. 

International Journal of Biometeorology 42: 44–50. 

 

page 8, since the instrumental record began in 1850. 

The World Meteorological Organization issued the following press release on December 8, 

2009: 2000-2009, The Warmest Decade. It is accessible at 

http://www.wmo.int/pages/mediacentre/press_releases/pr_869_en.html   

NASA’s Goddard Institute for Space Studies followed suit on January 21, 2010, issuing the 

following press release: 2009: Second Warmest Year on Record; End of Warmest Decade.    

http://www.giss.nasa.gov/research/news/20100121/ 

 

 

page 9, nears the end of her life. 

Lovelock, J., 2006. The Revenge of Gaia: Why the Earth Is Fighting Back—and How We Can 

Still Save Humanity, Allen Lane, an imprint of Penguin Books, London (p. 162), 177 pp. 

 

page 9, faces no risk from mere humans. 

Margulis, L., 1998. Symbiotic Planet: A New Look at Evolution, Basic Books, Perseus Books 

Group, New York, 147 pp. 

 

Chapter 1 

page 10, threatened by floodwaters, later reports revealed. 

Committee on Natural Disasters, 1994. Hurricane Hugo: Puerto Rico, the U.S. Virgin Islands 

and South Carolina, Natural Disaster Studies, vol. 6, published by the National Academy of 

Sciences, Washington, D.C., 276 pp. 

 

page 12, he modeled in a 1999 Nature paper. 

Emanuel, K., 1999. Thermodynamic control of hurricane intensity. Nature 410: 665–669. 

 

page 12, without passing over warm water. 

Regarding the scale of different hurricane seasons: data from Christopher Landsea provided 

to National Geographic for its August 2005 issue [208 (2): 72–85]. Regarding the scale of 

individual storms, see Michaels, P.J., P.C. Knappenberger, and R.E. Davis, 2006. Sea-

surface temperatures and tropical cyclones in the Atlantic basin, Geophysical Research 

http://www.wmo.int/pages/mediacentre/press_releases/pr_869_en.html
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Letters 33: L09708, 1–4. The latter argues that there is no linear effect from sea surface 

temperature, while the data presented suggests that a threshold (non-linear) change is 

involved.  

 

page 12, Gulf of Mexico’s 1995 Hurricane Opal. 

Shay, L.K., G.J. Goni, and P.G. Black, 2000. Effects of a warm oceanic feature on Hurricane 

Opal, Monthly Weather Review 128: 1366–1383. 

 

page 13, get cold feet if they head north. 

Lenart, M., 2004. Forecasters expect below-normal East Pacific hurricane activity despite 

likely El Niño development this season, Southwest Climate Outlook: 

http://www.climas.arizona.edu/forecasts/articles/hurricanes_june2006.pdf. Publications by 

the University of Arizona Climate Assessment for the Southwest are available through the 

following link: http://www.climas.arizona.edu/forecasts/swarticles.html  

 

page 13, an intact eye and the extra punch that comes with it. 

Aguado, E., and J.E. Burt, 1999. Understanding Weather and Climate, p. 309. Prentice Hall, 

Upper Saddle River, New Jersey, 474 pp. 

 

page 13, documented in a 2000 paper. 

Bender, M.A., and I. Ginis, 2000. Real-case simulations of hurricane-ocean interaction using 

a high-resolution coupled model: effects on hurricane intensity. Monthly Weather Review 

128: 917–945. 

 

page 13, mid-80s in degrees Fahrenheit. 

Geophysical Fluid Dynamics Laboratory Web site: http://www.gfdl.noaa.gov/visualization-

gallery . Link to a graphic that illustrates a cool wake in Katrina’s path (accessed March 14, 

2010): http://www.gfdl.noaa.gov/pix/tools_and_data/gallery/katrina-2520x1419.png  

 

page 13, from about 80 miles per hour to 65 miles per hour. 

NASA/Goddard Space Flight Center Scientific Visualization Studio animation at 

http://svs.gsfc.nasa.gov/stories/hurricanes/ 

 

page 14, they lingered over an area. 

Bender, M.A., I. Ginis, and Y. Kurihara, 1993. Numerical simulations of tropical cyclone–

ocean interaction with a high-resolution coupled model. Journal of Geophysical Research 98: 

23,245–23,263. 

 

page 14, between 1982 and 2001. 

Sriver, R., and M. Huber, 2007. Observational evidence for an ocean heat pump induced by 

tropical cyclones. Nature 447: 577–580. 

 

page 15, higher than their earlier estimates. 

Sriver, R.L., M. Huber, and J. Nusbaumer, 2008. Investigating tropical cyclone–climate 

feedbacks using the TRMM Microwave Imager and Quick Scatterometer. Geochemistry, 

Geophysics, Geosystems 9, Q09V11.  

 

page 15, Kevin Trenberth and John Fasullo in a 2008 paper. 

Trenberth, K.E., and J. Fasullo, 2008. Energy budgets of Atlantic hurricanes and changes 

from 1970. Geochemistry, Geophysics and Geosystems 9, Q09V08. 

 

page 16, some relate to the Cantonese phrase tái fung (great wind). 

http://www.climas.arizona.edu/forecasts/articles/hurricanes_june2006.pdf
http://www.climas.arizona.edu/forecasts/swarticles.html
http://www.gfdl.noaa.gov/visualization-gallery
http://www.gfdl.noaa.gov/visualization-gallery
http://svs.gsfc.nasa.gov/stories/hurricanes/
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Kerry Emanuel goes into a more detailed description of the origin and evolution of the words 

“hurricane” and “typhoon” on pp. 18–21 in his 2005 book Divine Wind: The History and 

Science of Hurricanes, Oxford University Press. 

 

page 17, a more manageable Category 3. 

Bennett, S.P., and R. Mojica. 1999. Hurricane Georges preliminary storm report. National 

Weather Service, Carolina, Puerto Rico. 15 pp.  

http://www.nhc.noaa.gov/1998georges.html 

 

page 18, in the weeks after the storm. 

Bennett, S.P., and R. Mojica. 1999. Hurricane Georges preliminary storm report.  National 

Weather Service, Carolina, Puerto Rico. 15 pp. http://www.nhc.noaa.gov/1998georges.html 

Also see Centers for Disease Control and Prevention report at 

http://www.cdc.gov/MMWR/preview/mmwrhtml/00055476.htm . 

 

page 19, in the New Orleans area alone. 

Knabb, R.D., J.R. Rhome, and D.P. Brown, 2005. Tropical Cyclone Report, Hurricane Katrina 

(p. 12) released by the National Hurricane Center on December 20, 2005. 

www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf 

 

page 19, estimated at $92 billion. 

Platt, Rutherford H., 2000. Extreme natural events: some issues for public policy. 

Discussion paper prepared for presentation at the Extreme Events Workshop, Boulder, 

Colorado, June 7–9, 2000. http://www.isse.ucar.edu/extremes/papers/platt.PDF 

 

page 20, matter most to hurricane dynamics. 

Emanuel, K., 1999. Thermodynamic control of hurricane intensity. Nature 410: 665–669. 

Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004. Environmental control of 

tropical cyclone intensity. Journal of Atmospheric Sciences 61: 843–858. 

 

page 20, but they were both scorchers. 

NASA’s Goddard Institute for Space Studies announced that 2005 was the warmest 

recorded on Earth’s surface since modern measurements began in the 1890s. For example, 

see http://www.nasa.gov/vision/earth/environment/2005_warmest.html . The NASA 

measurements include extrapolated estimates for areas not covered by measuring stations. 

However, the Intergovernmental Panel on Climate Change’s 2007 report cited other sources 

considered more authoritative for maintaining 1998 as the hottest year on record through 

2006. 

 

page 20, with tragic results. 

The kinetic energy of wind is a function of the windspeed squared, while the damage the 

winds can do increases at a faster rate, with the cube of windspeed being a better estimate. 

Personal communication (2006), Christopher Landsea, science and operations officer, 

National Hurricane Center, Miami, Florida. 

 

page 20, destructive force of Dennis’s winds. 

Knabb, R.D., J.R. Rhome, and D.P. Brown, 2005. Tropical Cyclone Report, Hurricane 

Katrina, released by the National Hurricane Center on December 20, 2005. 

www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf Gust reported by Pearl River County 

Emergency Operations Center. 

 

page 21, qualified for Category 3 status. 

http://www.cdc.gov/MMWR/preview/mmwrhtml/00055476.htm
http://www.isse.ucar.edu/extremes/papers/platt.PDF
http://www.nasa.gov/vision/earth/environment/2005_warmest.html
http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf
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The kinetic energy of wind is a function of the windspeed squared, while the damage the 

winds can do increases at a faster rate, with the cube of windspeed being a better estimate. 

Personal communication (2006), Christopher Landsea, science and operations officer, 

National Hurricane Center, Miami, Florida. 

 

page 21, estimated $100 billion in damages. 

Knabb, R.D., J.R. Rhome, and D.P. Brown, 2005. Tropical Cyclone Report, Hurricane 

Katrina, released by the National Hurricane Center on December 20, 2005. 

www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf 

 

page 21, accompanying storm surges. 

Gray, W.M., J.D. Sheaffer, and C.W. Landsea, 1997. Climate trends associated with 

multidecadal variability of Atlantic hurricane activity, in Diaz, H.F., and R.S. Pulwarty (eds.), 

Hurricanes: Climate and Socioeconomic Impacts, Springer, Berlin, pp. 15–54. The authors 

also refer readers to Landsea, C.W., 1991, West African monsoonal rainfall and intense 

hurricane associations. Dept. of Atmospheric Science Paper No. 484, Colorado State 

University, Fort Collins, p. 280. 

 

page 21, died in floods. 

Cosgrove, Peter, 2005. “The economy: How bad a blow,” p. 48 of National Geographic 

magazine special edition, Katrina: Why it became a man-made disaster; Where it could 

happen again. 

 

page 21, mainly in the Dominican Republic and Haiti. 

Bennett, S.P., and R. Mojica. 1999. Hurricane Georges preliminary storm report. National 

Weather Service, Carolina, Puerto Rico. 15 pp. 

 

page 21, over the past few decades. 

Knabb, R.D., J.R. Rhome, and D.P. Brown, 2005. Tropical Cyclone Report, Hurricane 

Katrina, released by the National Hurricane Center on December 20, 2005. 

www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf 

 

page 22, using satellite imagery. 

Cerveny, R.S., and L.E. Newman, 2000. Climatological relationships between tropical 

cyclones and rainfall. Monthly Weather Review 128: 3329–3336 (September). Tropical 

cyclones include hurricanes, typhoons, and cyclones, as well as tropical cyclones with winds 

below the 74-mile-an-hour threshold for a name-worthy storm. 

 

page 22, warming of tropical oceans. 

Knutson, T.R., and R.E. Tuleya, 2004. Impact of a CO2–induced warming on simulated 

hurricane intensity and precipitation: sensitivity to the choice of climate model and 

convective parameterization. Journal of Climate 17(18): 3477–3495.  

 

page 22, the volatility of the system increases. 

Robert Corell made this comment during a keynote talk at the December 2006 conference 

Tribal Lands and Climate, held in Yuma, Arizona. 

 

page 22, colleagues reported in 2005. 

Webster, P.J., G.J. Holland, J.A. Curry, and H.R. Chang, 2005. Changes in tropical cyclone 

number, duration and intensity in a warming environment. Science 309(5742): 1844–1846. 

Also see Hoyos, C.D., P.A. Agudelo, P.J. Webster, and J.A. Curry, 2006. Deconvolution of 

the factors contributing to the increase in global hurricane intensity. Science 312: 94–97.  

 

http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf
http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf
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page 22, included in the analysis. 

Sriver, R., and M. Huber, 2006. Low-frequency variability in globally integrated tropical 

cyclone power dissipation. Geophysical Research Letters 33: L11705. 

 

page 23, since about the mid-1970s. 

Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. 

Nature 436: 686–688. 

 

page 23, article written with colleagues. 

Emanuel, K., R. Sundararajan, and J. Williams, 2008. Hurricanes and global warming: 

results from downscaling IPCC AR4 simulations. Bulletin of the American Meteorological 

Society 89(3): 347–367. 

 

page 23, a decade at a time. 

Mann, M.E., and K.E. Emanuel, 2006. Atlantic hurricane trends linked to climate change. 

Eos: Transactions of the American Geophysical Union 87(24): 233–244 (13 June). 

 

page 24, natural climate variability. 

Lenart, M., 2006. Hurricane intensity rises with sea surface temps. Southwest Climate 

Outlook, June. Monthly publication by the University of Arizona Climate Assessment for the 

Southwest available through the following link: 

http://www.climas.arizona.edu/forecasts/articles/hurricanes_june2006.pdf 

 

page 24, burning gas, coal, oil, and forests. 

Levitus, S., J.I. Antonov, T.B. Boyer, and C. Stephens, 2000. Warming of the world ocean. 

Science 287: 2225–2228. Barnett, T.P., D.W. Pierce, K.M. AchutaRao, P.J. Gleckler, B.D. 

Santer, J.M. Gregory, and W.M. Washington, 2005. Penetration of human-induced warming 

in the world’s oceans. Science 309: 284–287. 

 

page 24, 2007 book Storm World. 

Mooney, C., 2007. Storm World: Hurricanes, Politics and the Battle over Global Warming, 

Harcourt Inc., Orlando, Florida. 392 pp. 

 

page 24, recipe for hurricane formation. 

Gray, W.M., 1979. Hurricanes: their formation, structure and likely role in the tropical 

circulation, pp. 155–218 in Meteorology over the Tropical Oceans, James Glaisher House, 

Bracknell, Eng., Royal Meteorological Society. 

 

page 24, wind shear in a 2001 paper. 

Goldenberg, S.B., C.W. Landsea, A.M. Mestas-Nuñez, and W.M. Gray, 2001. The recent 

increase in Atlantic hurricane activity: causes and implications. Science 293: 474–478. 

 

page 25, coverage of the tropical Atlantic. 

Wang, C., S.-K. Lee, and D.B. Enfield, 2008. Atlantic Warm Pool acting as a link between 

Atlantic Multidecadal Oscillation and Atlantic tropical cyclone activity. Geochemistry, 

Geophysics, Geosystems 9(5): 1–17.  

 

page 27, including the current climate. 

Hobgood, J.S., and R.S. Cerveny, 1988. Ice-age hurricanes and tropical storms. Nature 

333: 243–245. 

 

page 27, modern-day Chicago? 

http://www.climas.arizona.edu/forecasts/articles/hurricanes_june2006.pdf
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Wing, S.L., and D.R. Greenwood, 1993. Fossils and fossil climate: the case for equable 

continental interiors in the Eocene. Transactions of the Royal Society (London) 341: 243–

252. 

 

page 27, at these high altitudes. 

Huber, M., and L. Sloan, 2000. Climatic responses to tropical sea surface temperature 

changes on a “greenhouse” Earth. Paleoceanography 15: 443–450. 

 

page 27, late Cretaceous and Eocene hothouses. 

Pearson, P.N., P.W. Ditchfield, J. Singano, K.G. Harcourt-Brown, C.J. Nicholas, R.K. Olsson, 

N.J. Shackleton, and M.A. Hall, 2001. Warm tropical sea surface temperatures in the Late 

Cretaceous and Eocene epochs. Nature 413: 481–487. 

 

page 28, throughout the Eocene. 

Pearson, P.N., B.E. van Dongen, C.J. Nicholas, R.D. Pancost, S. Schouten, J.M. Singano, and 

B.W. Wade, 2007. Stable warm tropical climate through the Eocene epoch, Geology 35(3): 

211–214. 

 

p. 28, the Cretaceous hothouse. 

Bice, K.A., D. Birgel, P.A. Meyers, K.A. Dahl, K.U. Hinrichs, and R.D. Norris, 2006. A 

multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric 

CO2 concentrations. Paleoceanography 21: PA2002, 1–17. 

 

page 28, and other intense storms. 

Ito, M., A. Ishigaki, T. Nishikawa, and T. Saito, 2001. Temporal variation in the wavelength 

of hummocky cross-stratification: implications for storm intensity through Mesozoic and 

Cenozoic. Geology 29: 87–89. 

 

page 30, northeastern U.S. continental shelf. 

Davis, A., and X.H. Yan, 2004. Hurricane forcing on chlorophyll-a concentration off the 

northeast coast of the U.S. Geophysical Research Letters 31: L17304. The authors 

compared “before” and “after” satellite images of continental shelf waters for seven 

hurricanes traveling along the northeast U.S. coast between 1998 and 2003. Another 

research team reported similar findings in their study of 13 hurricanes during the years 

1998 through 2001: Babin, S.M., J.A. Carton, T.D. Dickey, and J.D. Wiggert, 2004. Satellite 

evidence of hurricane-induced phytoplankton blooms in an oceanic desert. Journal of 

Geophysical Research 109: C03043. 

 

page 31, from the air above. 

Matthews, B.J.H., 1999. The rate of air-sea CO2 exchange: chemical enhancement and 

catalysis by marine microalgae. Ph.D. dissertation, School of Environmental Sciences, 

University of East Anglia, Norwich. 

 

page 31, oxygen-starved fish. 

For instance, see the following paper: Paerl, H.W., J.D. Bales, L.W. Ausley, C.P. Buzzelli, 

L.B. Crowder, L.A. Eby, J.M. Fear, M. Go, B.L. Peieris, T.L. Richardson, and J.S. Ramus, 

2001. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the 

United States’ largest lagoonal estuary, Pamlico Sound, NC. Proceedings of the National 

Academy of Sciences 98(10): 5655–5660. 

 

page 31, for two subsequent years. 

Gupta, A., 2000. Hurricane floods as extreme geomorphic events, in The Hydrology-

Geomorphology Interface: Rainfall, Floods, Sedimentation, Land Use, Proceedings of the 
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Jerusalem Conference, May 1999, IAHS Publ. no. 261: 215–228, citing Thomas, H., 1991. 

Water quality analysis for the period 1988–1990; UNDP, UNEP, and Government of Jamaica 

project—Environmental management of the Hope River Watershed. JAM/87/008–009 UNDP, 

unpublished report. University of the West Indies, Mona. 

 

page 32, New York Times story. 

Baker, Al. “Remembering Help Received After Sept. 11, New York sends officers to 

Louisiana.” New York Times, September 7, 2005. 

 

page 32, Labor Day in 1935. 

Kang, W.J., and J.H. Trefry, 2003. Retrospective analysis of the impacts of major hurricanes 

on sediments in the lower Everglades and Florida Bay. Environmental Geology 44: 771–780. 

 

page 33, before they sink. 

Maser, C., and J.R. Sedell, 1994. From the Forest to the Sea: The Ecology of Wood in 

Streams, Rivers, Estuaries, and Oceans, St. Lucie Press, Delray Beach, Florida, p. 200. 

 

page 33, director Ariel Lugo. 

Lugo, Ariel E., 2000. Effects and outcomes of Caribbean hurricanes in a climate change 

scenario. The Science of the Total Environment 262: 243–251. 

 

page 34, in the scientific literature. 

See Biotropica 23(4A), December 1991, Special Issue: Ecosystem, Plant, and Animal 

Responses to Hurricanes in the Caribbean. 

 

page 34, Lawrence Walker reported. 

Walker, L.R., 1991. Tree damage and recovery from Hurricane Hugo in Luquillo 

Experimental Forest, Puerto Rico, Biotropica 23(4A): 379–385. 

 

page 34, Hurricane Joan in 1988. 

Yih, K., D.H. Boucher, J.H. Vandermeer, and N. Zamora, 1991. Recovery of the rain forest 

of southeastern Nicaragua after destruction by Hurricane Joan. Biotropica 23(2): 106–113. 

Boucher, D.H., J.H. Vandermeer, K.Yih, and N. Zamora, 1990. Contrasting hurricane 

damage in tropical rain forest and pine forest. Ecology 71(5): 2022–2024. 

 

page 34, depending on species and location. 

Lenart, M.T., 2003. A comparative study of soil disturbance from uprooted trees, and 

mound and pit decay in Puerto Rico and Colorado. Ph.D. dissertation, School of Natural 

Resources, University of Arizona. The plots were 500 square meters, roughly 5,400 square 

feet. 

 

page 34, debris in urban areas. 

Gray, Kevin, 1998. Debris management: the grind after the storm. BioCycle, November, pp. 

38–41. In the Florida Keys, Georges left about 900,000 cubic yards of debris, mostly trees 

and branches. 

 

page 34, in Louisiana alone. 

Eaton, Leslie, 2006. After hurricanes come tempests over cleanups. New York Times, 

February 24, 2006. 

 

page 35, both in Florida. 
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Knabb, R.D., J.R. Rhome, and D.P. Brown, 2005. Tropical Cyclone Report, Hurricane 

Katrina, released by the National Hurricane Center on December 20, 2005. 

www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf 

 

page 35, Environmental Science Department. 

Scatena, F.N., S. Moya, C. Estrada, and J.D. Chinea, 1996. The first five years in the 

reorganization of aboveground biomass and nutrient use following Hurricane Hugo in the 

Bisley Experimental Watersheds, Luquillo Experimental Forest, Puerto Rico. Biotropica 28 

(4a): 424–440. 

 

page 35, forests’ overall productivity. 

Sanford, R.L., W.J. Parton, D.S. Ojima, and D.J. Lodge, 1991. Hurricane effects on soil 

organic matter dynamics and forest production in the Luquillo Experimental Forest, Puerto 

Rico: results of simulation modeling. Biotropica 23(4a): 364–372. 

 

page 35, lead author Scatena. 

Scatena, F.N., and M.C. Larsen, 1991. Physical aspects of Hurricane Hugo in Puerto Rico. 

Biotropica 23(4a): 317–323. 

 

page 36, in Tegucigalpa, Honduras. 

Collier, M., and R.H. Webb, 2002. Floods, Droughts, and Climate Change, University of 

Arizona Press, Tucson, pp. 96, 153. 

  

page 38, in its own right. 

Lovelock, J.E., 1979. Gaia: A New Look at Life on Earth. Oxford University Press, Oxford, 

England. 

 

Chapter 2 

page 39, specifically an animal. 

Scofield, Bruce, 2004. Gaia: the living Earth—2,500 years of precedents in natural science 

and philosophy, pp. 151–160 in Schneider, S.H., J.R. Miller, E. Crist, and P.J. Boston (eds.), 

Scientists Debate Gaia: The Next Century, MIT Press, Cambridge, Mass. 

 

page 40, at a 2006 conference. 

Margulis used the term “homeorrhesis” during a brief conversation we had on October 14, 

2006, at a conference on Gaia theory.  

 

page 40, cool desert nights. 

Lovelock, J., 2006. The Revenge of Gaia: Why the Earth Is Fighting Back—and How We Can 

Still Save Humanity, Allen Lane, an imprint of Penguin Books, London (p. 177). 

 

page 40, of interglacial periods. 

Siegenthaler, U., T.F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, 

J.M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, 2005. Stable carbon cycle-

climate relationship during the Late Pleistocene. Science 310: 1313–1317. See also Petit, 

J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, 

M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, 

L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard, 1999. Climate and atmospheric history of 

the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436. 
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