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Abstract
Global Climate Models (GCMs) operate 
at scales much larger than the federal and 
state forest, range and riparian ecosystems 
managed by land and water professionals. 
Therefore, incorporating information on 
climate change projections into resource 
management plans requires GCM pro-
jections at a scale more relevant to eco-
systems, especially in topographically di-
verse regions such as the western United 
States. In an effort to address this need, we 
developed downscaled climate projections 
for the Southern Colorado Plateau (SCP) 
(35° to 38°N, 114° to 107°W), centered 
on the Four Corners states. We compared 
twenty-two global climate models (GCMs) 
from the archive of model runs used in the 
Intergovernmental Panel on Climate Change 
Fourth Assessment Report, and statistically 
downscaled them to a 4 km grid, to accord 
with spatially and temporally continuous 
historic observations using the Parameter-
elevation Regressions on Independent 
Slopes Model (PRISM) data set. From these 
results, we selected five models representing 
a range of plausible possible climate futures. 
We consider them in the context of three 
seasonal time frames observed to be critical 
for vegetation in the SCP: winter (Novem-
ber–March), arid foresummer (May–June), 
and summer monsoon (July–September). 
Projections for the SCP describe a warmer 

future, in which annual temperatures seem 
likely to increase by 1.5° to 3.6°C by mid-
century, and 2.5° to 5.4°C by the end of the 
century, depending on the model chosen. 
Annual temperatures are projected to exceed 
the 1950–1999 range of variability by the 
2030s. Annual precipitation changes are 
more equivocal. A conservative estimate, 
using a 22-model ensemble average, in-
dicates that SCP annual precipitation may 
decrease by 6% by the end of the century. For 
precipitation projections, GCM agreement is 
greatest for the May–June arid foresummer 
season, and projections show SCP May–
June precipitation declining by 11 to 45% 
during the twenty-first century. Downscaled 
output from this study will be used to drive 
vegetation change models with the intent of 
examining a diversity of possible outcomes 
so scientists can test an array of vegetation 
changes, and resource managers can make 
informed decisions in relation to the range of 
possible climate change scenarios.

Introduction
This paper describes the process and results 
of Global Climate Model (GCM) selection 
and statistical downscaling of climate par-
ameters for use by ecologists examining 
vegetation change in the Southern Colorado 
Plateau (Figure 1). The downscaled climate 
data will eventually be used as input into 
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Figure 1. Western United States and Southern 
Colorado Plateau (shaded box) domains used in 
this study.

process-based, landscape-scale vegetation 
models. The impetus for the study is 
scientific and public interest regarding the 
recent rapid and massive forest mortality 
on the Southern Colorado Plateau (SCP), 
which affected nearly 1.4 million hectares of 
forest land between 2002 and 2004 (USDA 
2008). Given coarse spatial scale projections 
of a warmer drier Southwest (Seager et al. 
2007), there is concern that such changes 
may presage future ecosystem changes in the 
region. Research on pinyon pine mortality 
in the SCP suggests that a combination of 
drought and unusually high temperatures 
depleted soil moisture to a greater extent 
during a recent drought episode than during 
past drought episodes, thus exposing trees 
to “global-change-style” drought stress 
(Adams et al. 2009, Breshears et al. 2005). 
Moreover, researchers speculate that in-
creasing temperatures also enhance insect 
life cycles and predispose Southwestern 
forests to greater risk of massive mortality in 

response to drought (Stephenson et al. 2006, 
Burkett et al. 2005, Logan et al. 2003). 

Global Climate Model (GCM) grid 
cells, the areal unit at which parameters are 
projected by the models, are often larger 
than 1 degree latitude and longitude per 
side (~100 km in mid-latitudes). In a region 
as topographically diverse as the Colorado 
Plateau, having a single value for a parameter 
such as precipitation makes it challenging 
for resource managers to consider how 
temperature and precipitation changes will 
impact the considerably smaller than GCM 
grid cell-sized forest, range, and riparian 
ecosystems that they manage. For example, 
the dramatic topography of the San Francisco 
Peaks of northern Arizona would take up only 
a small fraction of a 1°x1° grid cell, and their 
effect on local climate and hydrology would 
be greatly attenuated. Although statistically 
downscaling GCM projections to finer spatial 
scales cannot remove so-called epistemic 
uncertainties (e.g., imperfect knowledge of 
some climate system processes), improving 
the spatial scale of GCM estimates to the 
point where the effects of regional elevation 
can be approximated should help improve 
estimates. The addition of such detail in 
model projections could provide guidance 
needed by land managers to discern projected 
temperature differences between mountain 
ranges and adjacent rangelands, and to better 
evaluate management strategies and climate 
change adaptation options (e.g., Bachelet et 
al. 2003). While modelers work to improve 
spatial resolution and dynamical processes 
within the next generation of models, 
relatively quick and cost-effective statistical 
downscaling efforts can allow scientists and 
managers to evaluate more finely detailed 
and plausible potential impacts based 
on the array of current generation GCM 
projections. 

Climate has long been known to be 
important in determining the distribution 
of native plants on the landscape. The 
physiological adaptations of individual 
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Figure 2. Southern Colorado Plateau moisture balance. (A) Mean monthly temperature, precipitation, and 
potential evapotranspiration (PE) for 1950–1999. (B) Precipitation minus potential evapotranspiration. 
Potential evapotranspiration is calculated using Hamon’s method (Hamon 1961). Data: PRISM 4 km (Daly et 
al. 1994); PE calculations provided by Andrew Ellis, Arizona State University.

plant species allow them to take advantage 
of seasonal patterns in available moisture.  
Topographic diversity within northern 
Arizona creates several vegetation life 
zones within the region. Temperature and 
precipitation can vary greatly from the lower 
regions of the Grand Canyon to the top of 
the San Francisco Peaks, but the seasonality 
of these parameters is the same, regardless 

of altitude, slope, and aspect.  Annual 
precipitation follows a bimodal distribution, 
split between large, spatially coherent, winter 
frontal storms and isolated summer monsoon 
convective storms.

Moisture surplus in the SCP typically 
occurs from November to March (Figure 2). 
April reflects a turning point when monthly 
mean temperatures rise to a point where the 
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growing season typically begins even as 
precipitation decreases.  By May and June, 
temperatures rise high enough to affect water 
vapor pressure. The typically sparse rainfall 
does little to offset high levels of potential 
evapotranspiration (PE).  This period of time 
can cause severe vegetation stress and even 
mortality in seedlings lacking an established 
root system and, during extreme years, in 
established perennial species (Breshears et al. 
2005). Many of the perennial bunch grasses 
common to northern Arizona remain semi-
dormant during this time period.  For woody 
plant recruitment, this is often a critical 
period; ponderosa pine (Pinus ponderosa), 
the dominant tree in the region, has been 
shown to have had cohort events occurring 
during anomalously cool and wet May–June 
periods (Savage et al. 1996). Conversely, 
ponderosa forests are most susceptible 
to damage from infestions of bark-beetle 
(primarily Dendroctonus  spp. and Ips spp.) 
and wildfires when these pre-monsoon 
months are anomolously dry (Adams et al. 
2009). 

On average, Southern Colorado Plateau 
summer monsoon precipitation begins in 
mid-July (Higgins et al. 1999). Although it 
occurs during a time when PE and average 
monthly temperature are at their annual 
peaks, it typically brings enough precipitation 
to decrease the moisture deficit during this 
time of year (Figure 2). As average monthly 
temperature begins to decrease in August, 
monsoon precipitation reaches its regional 
apex, which further decreases the mois-
ture deficit. By mid-September, monsoon 
precipitation typically decreases, but so 
does temperature. October, like April, is a 
transition period between annual moisture 
surplus and deficit.

In the rest of this chapter, we  describe 
the process of GCM selection and statistical 
downscaling of climate parameters, and 
the implications of these results.  In the 
introduction, we describe the GCM data, 
downscaling methods, and model-selection 

criteria. In the data and methods section  we 
discuss the GCMs and ensemble averages 
selected, and we examine the spatial and 
temporal fidelity of the GCMs in reproducing 
the seasonal cycle of temperature and 
precipitation over the study domain, the 
Southern Colorado Plateau. In the section on 
the results of model selection and simulations 
of Colorado Plateau seasonal cycle, we 
discuss the GCM projections for the twenty-
first century over the study domain. In the 
discussion section, we consider implications 
for colleagues interested in vegetation 
modeling and alternatives to our approach 
that may inform future studies. The final 
section contains a summary of major 
conclusions.

Data and Methods 
Historic Climate Records

To compare historic observations to GCM 
simulations, in order to correct model biases 
and implement downscaling algorithms, we 
used mean monthly temperature and monthly 
total precipitation data from the Parameter-
elevation Regressions on Independent Slopes 
Model (PRISM) 4 km grid cell resolution 
dataset (Daly et al. 1994) (www.prism.
oregonstate.edu).  PRISM uses point data, 
spatial data sets, a knowledge base, and expert 
interaction to generate estimates of gridded 
monthly climatic parameters (Daly et al. 
2001). A combination of linear regression and 
a series of rules, decisions, and calculations 
set weights for the station data entering the 
linear regression (Daly et al. 2002). The 
weighting function contains information 
about relationships between the climate field 
and geographic or meteorological factors. 
Weighting factors include measures such 
as elevation, distance from the predicted 
location, station clustering, vertical layer (to 
account for local inversions), topographic 
facet (to account for rainshadows), coastal 
proximity, and effective terrain weights 
(Daly et al. 2002). We compared PRISM 
estimates to simulations for the period 
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Figure 3. Southern Colorado Plateau observed (bars) and GCM simulated (lines) mean monthly temperature (°C), 
1950–1999. See Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in the IPCC 
Fourth Assessment Report data set (Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994).

1895–2000 (used in Figures 3–9), and used 
1950–1999 as the climatological average 
period for calculating anomalies. PRISM 
provides the most topographically precise, 
methodologically sound, quality-controlled 
historic climate data set available for century-
long time scales; thus, PRISM is a robust 
choice for spatial and topographic concerns 
that underlie the requirements of vegetation 
models that will be served by downscaled 
GCM projections from this study. 

Global Climate Model (GCM) Projections
We garnered climate model projections used 
in the Fourth Assessment Report (AR4) of 
the Intergovernmental Panel on Climate 
Change (IPCC) from the Program for Climate 
Model Diagnosis and Intercomparison 
(PCMDI) archive. Details on the models 
and their configurations are available at 
http:/ /wwwpcmdi.l lnl .gov/ipcc/about 
ipcc.php. These projections used coupled 

ocean-atmosphere models (AOGCMs) to 
simulate climate variations spanning the late 
nineteenth century to the end of the twenty-
first century (see Meehl et al. 2007); this 
generation of models is referred to as Coupled 
Model Intercomparison Project version 3 
(CMIP3). We analyzed, individually, 22 of 
these models (48 simulations; Table 1) that 
are forced with estimated greenhouse gas 
and aerosol changes from the late nineteenth 
century through 1999, and the IPCC Special 
Report on Emissions Scenarios (SRES) 
A1B scenario from 2000 to 2100. The A1B 
scenario describes a future world of rapid 
economic growth, with global population 
that peaks in mid-century then declines, and 
rapid introduction of new and more efficient 
technologies that are balanced such that no 
single source of energy is overly dominant 
(Nakicenovic et al. 2000). This scenario, 
sometimes referred to as “the medium non-
mitigation scenario” (Moss et al. 2008), has 
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Table 1. GCM rankings for spatial correlation between GCM simulation and observed seasonal precipi-
tation over land in the western United States, 1950–1999. Low rank indicates the best combined correla-
tions with the annual cycle of precipitation. Bold font indicates GCM identifiers used in the text.

GCM Modeling Center, Country Rank

HADGEM1 Hadley Centre, UK 10
ECHAM5/MPI Max Planck Institute, Germany 26
ECHAM4/MPI Max Planck Institute, Germany 27
CGCM3.1/T63 Canadian Centre for Climate Modelling & Analysis 29
GFDL-CM2.1 NOAA Geophysical Fluid Dynamics Lab, US 35
CGCM3.1/T47 Canadian Centre for Climate Modelling & Analysis 37
GISS-EH NASA Goddard Institute for Space Studies, US 37
HadCM3-UKMO Hadley Centre, UK 38
MIROC3.2(medres) Center for Climate System Research (The University 

of Tokyo), National Institute for Environmental Stud-
ies, and Frontier Research Center for Global Change 
(JAMSTEC), Japan

39

CNRM CM3 Météo-France / Centre National de Recherches Mé-
téorologiques, France

42

CSIRO MK3.0 CSIRO, Australia 42
MIROC 3.2(hires) Center for Climate System Research (The University 

of Tokyo), National Institute for Environmental Stud-
ies, and Frontier Research Center for Global Change 
(JAMSTEC), Japan

44

MIUB ECHO-G Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of KMA, and 
Model and Data group. 

50

NCAR CCSM3 National Center for Atmospheric Research, US 50
GISS-ER NASA Goddard Institute for Space Studies, US 53
NCAR PCM1.0 National Center for Atmospheric Research, US 56
BCCR BCM2.0 Bjerknes Centre for Climate Research, Norway 58
GFDL-CM2.0 NOAA Geophysical Fluid Dynamics Lab, US 62
GISS-AOM NASA Goddard Institute for Space Studies, US 63
IAP-FGOALS Institute of Atmospheric Physics, People’s Republc of 

China
67

ISPL-CM4 Institut Pierre Simon Laplace, France 71
INM-CM3.0 Institute for Numerical Mathematics, Russia 76

been favored for analyses in some situations 
where capturing the full range of scenario 
output may be too computationally intensive 
(sensu Seager et al. 2007).  It is known by 

some as the “business as usual” scenario and, 
as such, is a reasonable choice of emission 
scenario for examining plausible futures. 
Further, all the scenarios yield similar output 
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through about 2030. It is only after mid-
century that the scenarios begin to diverge 
extensively. We analyzed total monthly 
precipitation and monthly mean temperature 
for each individual model and the 22-model 
ensemble mean (Hoerling et al. 2007). 

Downscaling
The AR4 GCMs use a variety of grid 
resolutions, typically in the range of 
approximately 2.5° (~300 km in middle 
latitudes) per side of the grid box. The first 
step in the data treatment is to align the GCMs 
to a common grid, in this case to the same 
4 km grid used by PRISM, using inverse 
distance weighting (Eischeid et al. 2000). 
Once the GCM estimates for each parameter 
have been re-gridded, we statistically 
downscale the GCM estimates using the 
method described in detail by Salathé 
(2005) and summarized in this section. The 
method uses the PRISM estimates to impose 
spatial structure to the GCM-simulated 
monthly precipitation and temperature, while 
preserving the atmospheric processes driving 
the simulations. As mentioned by Salathé 
(2005), Widmann et al. (2003) used a similar 
method, referred to as “local scaling.”

To remove the bias between the large-
scale simulated climate parameter and the 
observed climate parameter at each grid cell, 
we apply monthly corrections so magnitudes 
of the GCM simulations of the historic period 
conform to observations for the 1950–1999 
period of overlap with the PRISM data. 
The twentieth-century runs used to fit each 
model are simulations forced by historic 
variations in greenhouse gases, solar output, 
and atmospheric aerosol loading. For each 
of the models presented here, the twentieth-
century runs were obtained from the PCMDI 
archive. The aforementioned biases are 
presumed to be the same from year to 
year, because at the monthly time scale the 
models can resolve the large-scale weather 
systems that generate observed temperature 
and precipitation across the Colorado 

Plateau.  The spatial biases and magnitudes 
are corrected independently at each grid 
point for each model, by multiplying the 
simulated parameters by monthly bias factor 
(for precipitation) or by taking the difference 
between the simulation and the bias factor 
(for temperature), as described with the 
equations adapted from Salathé (2005) 
below.

Let Pmod(x, t) be the simulated monthly 
precipitation for the large-scale gridpoint in 
location x and at time t (in months); (Pmod)mth 
is the monthly mean taken over the period 
of overlap between the simulated data and 
observations (Pobs)mth. The downscaled 
monthly mean precipitation (Pds), then, can 
be calculated by:   

Pds (x,t) = Pmod(x,t) (Pobs)mth/(Pmod)mth

The fitting is performed independently for 
each month.

 Surface air temperature is downscaled 
in a similar way. For temperature, the 
adjustment uses the difference between the 
mean bias and the observations. Let Tmod(x, 
t) be the simulated monthly temperature, 
(Tmod)mth be the simulated monthly mean 
taken over the fitting period, and (Tobs)mth be 
the monthly mean of the observations taken 
over the fitting period. Then, the downscaled 
monthly mean surface temperature (Tds) can 
be calculated by: 

Tds (x,t) = Tmod(x,t) + [(Tobs)mth – (Tmod)mth]

This correction assumes that the large-
scale temperature predicts the local tem-
perature, given the removal of a monthly 
bias in the mean. Salathé (2005) notes that 
this additive methodology may be thought 
of as a lapse-rate correction due to the 
elevation difference of the local gridpoint 
relative to the GCM grid. Like Salathé, we 
make no allowance for possible changes in 
the lapse rate as a consequence of climate 
change. Despite these limitations to the 
aforementioned methods, and the dependency 
of this statistical approach on the accuracy 
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of the regional circulation patterns produced 
by the GCMs (CCSP 2008), the method is 
computationally efficient, and previous 
studies show a relatively high confidence in 
the simulations of storms and jet streams in 
the middle latitudes (CCSP 2008).

Ranking procedure 
In order to determine the most appropriate 
GCMs to use in the vegetation change 
analyses, we ranked the models using four 
metrics based on the fit between the GCM 
climatological estimates of western U.S. 
seasonal precipitation during the period of 
fit and the observed seasonal precipitation 
averaged over the period 1950–1999. We 
compared observed parameters and GCM 
projections for three seasons chosen for their 
influence on Colorado Plateau vegetation: 
November–March (winter), May–June (pre-
monsoon) and July–September (monsoon). 
We did not assess fit between simulated 
and observed temperature, because it is 
well known that there is good agreement 
between model temperature simulations 
for western North America (IPCC 2007), 
and the bias corrections should account for 
differences in magnitude.  We acknowledge 
that, compared with temperature, spatial 
variations in precipitation are less well 
understood and that there is a greater spread 
between models in simulated precipitation—
thus, choice of models can make a difference 
in the application of projections for decision-
making (IPCC 2007; CCSP 2008; Brekke 
et al. 2008). We assume that models that 
simulate well the recent precipitation history 
of these key seasons are likely to simulate 
key characteristics of future climate—
although Pierce et al. (2009) found no strong 
relationship between the score of the CMIP3 
models on a set of performance metrics and 
the results of a detection and attribution study 
of western North America temperatures. In 
using this metric, we acknowledge that we 
cannot tell whether well-fitting simulations 
for our region produce the “right results” for 

the wrong (mechanistic) reasons. 
We computed four values for each model, 

using metrics computed seasonally and 
then averaged, for the evaluation domain of 
interest, the continental United States west 
of 100°W. We evaluated the models based 
on this western-U.S. comparison rather than 
the much smaller domain of our study area 
in order to encompass a larger array of grid 
points in the GCMs. We reasoned that if the 
models cannot perform well for the West as 
a whole, their performance in our study area 
could be the result of chance rather than skill.  
The values we computed are as follows:

•	the spatial correlation coefficient be-
tween simulated and observed (PRISM) 
precipitation at the 4 km scale over the 
domain of interest for each of the three 
selected seasons; 

•	the spatial congruence coefficient for the 
same;

•	the mean ratio of simulated/observed 
area-averaged precipitation for each 4 
km grid cell over the domain of interest, 
based on the seasonal precipitation totals 
in millimeters; and 

•	the mean ratio of simulated/observed 
area-averaged precipitation for each 4 
km grid cell over the domain of interest, 
based on the seasonal precipitation 
expressed as a percentage of the annual 
total. 

These metrics evaluate the GCMs’ fidelity 
for spatial distribution of precipitation, 
precipitation amplitude, and seasonal cycle 
of precipitation. These four sets of metrics 
for each of the 22 models were then ranked, 
and the ranks summed for each model. The 
best rank for each metric is 1, and the worst 
is 22. The best possible cumulative rank is 4, 
i.e., a rank of 1 for each of the four metrics. 
For example, the HAD model produced the 
following ranks: 1, 3, 3, 3, which yielded an 
overall score of 10 (Table 1). 

We acknowledge that the GCMs differ 
significantly in terms of basic physical and 
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dynamical design and number of atmospheric 
and oceanic layers; accounting for such 
factors may have resulted in a different choice 
of models. For example, process-based 
measures, such as the ability of a model to 
reproduce the El Niño-Southern Oscillation 
(ENSO), are certainly appropriate for 
studying Colorado Plateau climate; however, 
a model with acceptable ENSO simulation 
may lack acceptable monsoon simulation. 
Although several studies project decreasing 
annual precipitation in the southwestern 
United States (IPCC 2007, Seager et al. 
2007), we recognize the limitations of 
statistically downscaling GCM output to our 
study area. As we show below, the annual 
cycle of precipitation for the western United 
States is poorly simulated by many of these 
models (Pierce et al. 2009), a result also 
found in studies of previous generations of 
models (Coquard et al. 2004). 

Results: Model selection and 
simulations of Colorado Plateau 

seasonal cycle
GCMs were ranked based upon their 
performance in the western half of the United 
States, using fidelity to seasonal and spatial 
statistics of precipitation as the overarching 
metric (Table 1). The overall score for the 
HAD model (10) produced the lowest rank 
of all models used in this analysis—that 
is, HAD precipitation for 1950–1999 was 
most faithful to the seasonal cycle and 
spatial distribution of precipitation in the 
observed record. The next closest score was 
26 (ECHAM5). For each of the four ranking 
metrics, the order of models (best/lowest 
to worst/highest) did not change much (not 
shown).  In other words, any of the above four 
metrics individually produce approximately 
the same order as that for summing the four 
and then ranking the models. 

Rank results did not form the final basis 
for model selection, although all GCMs 
selected did rank in the top 11, accounting for 
ties in some of the rankings (Table 1). Along 

with the top two models, three other models 
were selected, based on subjective criteria. 
CSIRO (score 42) and CNRM (score 42), 
which tied for rank 9, were included because 
together they bracket the range of published 
projections for aridity in the southwestern 
United States (Seager et al. 2007). Seager 
and his colleagues modeled precipitation 
minus evaporation anomalies (P-E) using 
A1B-emissions scenario projections for 19 
IPCC AR4 models. Mid-century (2041–
2060) projections ranged from about -0.12 
mm/day (CNRM) to no detectable change; 
CSIRO and HAD both showed near zero 
change or slight increases in P-E (Figure 2 
of Seager et al. 2007). NCAR (score 50; rank 
11) was selected because of opportunities to 
use this model to expand upon this work in 
collaboration with other investigators (e.g., 
Govindasamy et al. 2003, Diffenbaugh et al. 
2005). None of these five models required 
flux corrections in order to maintain a stable 
climate in control runs (Kripalani et al. 
2007). 

A 22-model ensemble mean (22-ME) 
also was included for comparison with 
the individual models.  Ensemble means 
generally improve the performance of 
climate simulations at both global (Reichler 
and Kim 2008) and regional scales (Pierce 
et al. 2009). Pierce and colleagues (2009) 
compared 42 performance metrics on 
21 current GCMs and found multimodel 
ensemble means consistently outperformed 
individual models used for a climate change 
detection and attribution study. They found 
that a suite of at least five randomly selected 
models proved superior to any individual 
model, as long as at least 14 model runs 
were incorporated, because ensembles with 
sufficient realizations reduce the effects of 
internal climate variability. (N.B.: in this and 
other analyses, multiple realizations of models 
are included when available). They traced 
the improved performance of multimodel 
ensembles to the cancellation of offsetting 
errors in the individual models. These results 
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Figure 4. Southern Colorado Plateau observed (bars) and GCM simulated (lines) mean monthly precipitation (mm), 
1950–1999. See Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in the IPCC 
Fourth Assessment Report data set (Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994).

were robust, regardless of whether the 
“best” models, based on comparisons with 
historical data, were selected. However, by 
defining the mean more precisely through 
a larger sample size, ensemble mean 
results display less interannual variability 
than individual models. For the purpose of 
ecological studies, which are dependent on 
the interannual variability in time series, it 
is often the extremes rather than the average 
conditions that define the boundaries of 
species distribution. Consequently, in this 
paper, emphasis will also be given to the 
individual model results. 

Simulations for Southern Colorado
 Plateau area

The GCMs more closely simulate the 
seasonal cycle of 1950–1999 Colorado 
Plateau monthly mean temperature than 
they simulate the seasonal cycle of monthly 
mean precipitation (Figures 3 and 4). This 

is consistent with results from global-scale 
studies; Covey et al. (2003) found that 
historic global temperatures generated by 
CMIP2-coupled atmosphere-ocean Global 
Climate Models (AOGCMs) correlated 
exceedingly well with historic observed 
temperatures (r > 0.93 for each model), 
whereas correlations between AOGCMs and 
observed precipitation ranged from 0.4 to 
0.7.  

Temperature
The ECHAM5 model shows the closest match 
to the observed seasonal cycle of Colorado 
Plateau temperatures (Figure 3). HAD 
exaggerates the seasonal temperature range; 
HAD temperatures are too hot in summer and 
too cold in winter. The NCAR model shows 
a similar exaggeration of average monthly 
temperature range. The CNRM and CSIRO 
models exhibit seasonal cycles similar to the 
ensemble average—temperatures that are 
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Table 2. Observed and simulated temperature (top) and precipitation (bottom) for the three seasons ana-
lyzed in this study (November–March; May–June; July–September). See Table 1 for GCM acronyms. 
“22-ME” refers to the ensemble mean of 22 GCMs used in the IPCC Fourth Assessment Report data set 
(Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994). Temperature is in °C.  Precipitation 
is in mm.

TEM PRISM CNRM ECHAM5 NCAR CSIRO HAD 22-ME

NOV-MAR 2.0 -0.3 1.8 -0.7 -0.5 -1.0 -0.3

MAY-JUN 16.6 16.0 17.2 20.0 16.2 21.1 17.9

JUL-SEP 20.4 21.5 21.2 23.9 20.7 24.6 22.1

PRECIP PRISM CNRM ECHAM5 NCAR CSIRO HAD 22-ME

NOV-MAR 131.5 197.9 306.2 285.5 267.3 128.8 263.4

MAY-JUN 27.9 50.7 31.3 40.8 99.8 50.2 63.4

JUL-SEP 108.5 123.8 107.3 45.2 156.8 138.4 103.6

cooler than the observed average during the 
winter, spring, and fall months, but near the 
observed average during the summer months. 
The IPCC Fourth Assessment Report notes 
that Western North America temperature 
was underestimated by most AR4 GCMs 
(Christensen et al. 2007); the median bias 
for annual temperature was -1.3°C. The most 
pronounced under-estimation of seasonal 
temperature was for spring (March–May); 
the median bias was -2.0°C.

Precipitation
HAD shows the best match with the 
observed seasonal cycle of precipitation 
(Figure 4) and associated spatial distribu-
tion of precipitation (Table 3). Although 
HAD projections for July and August total 
precipitation are 38.3% and 36.0% higher, 
respectively, than the observed, it is the 
only model considered here that does not 
drastically overestimate Colorado Plateau 
winter season precipitation (Figure 4; Table 
2). The NCAR model depicts a Mediterranean 
climate seasonal cycle of precipitation 

for the Southern Colorado Plateau region, 
whereas the CSIRO shows little variation 
in precipitation between months, in contrast 
to the observed bimodal season cycle. The 
CNRM, ECHAM5 and the 22-ME all show 
bimodal seasonal cycles, but overestimate 
November–March precipitation, as well as 
April and September precipitation.

Table 3 presents a qualitative comp-
arison of model estimates versus observed 
precipitation for the Southern Colorado 
Plateau (SCP). For November–March, 
most of the models overestimate SCP 
mean precipitation. The HAD and 22-ME 
produce wetter than observed conditions 
in the southeastern quadrant of the SCP. 
The CSIRO, ECHAM5, and NCAR models 
all exhibit wetter than observed winter 
precipitation, with the ECHAM5 showing 
more than double the observed precipitation 
over most of the SCP domain. The CRNM 
CM3 simulates wetter than observed pre-
cipitation over the southern half of the 
SCP. Overestimation of winter precipitation 
in the U.S. West is a long-standing issue 
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Table 3. Qualitative assessment of GCM simulated precipitation compared to observations (1950–1999) 
for the Southern Colorado Plateau (SCP; see Figure 1). Each bold outlined box represents the SCP, and 
each quadrant of a bold outlined box represents one quadrant of the domain, corresponding to Figure 1 
(clockwise from left, NW NE, SE, SW). Sign indicates the direction of projection, boldness indicates 
magnitude. + much greater than observed; + greater than observed; – less than observed; — much less 
than observed. Blanks indicate approximately similar total precipitation.

Model Winter PPT 
(Nov-Mar)

Spring PPT 
(May-Jun)

Summer PPT 
(Jul-Sep)

22-Model Ensemble
+ + – +

+ + – +

UKMO-HADGEM1
+ – +

+ + – +

MPI-ECHAM5
+ – +

+ + – +

CSIRO-MK3
+ + + + +

+ + + + – +

CNRM-CM3
+ – +

+ + + – +

NCAR-CCSM3
+ + + – –

+ + + — –

among GCMs (Coquard et al. 2004), related 
in part to the complex topography of the 
region (Duffy et al. 2003). The IPCC Fourth 
Assessment Report notes that more than 75% 
of the models overestimated western North 
America annual and seasonal precipitation 
(Christensen et al. 2007). The median 
precipitation bias was highest for winter 
(93%, December–February) and lowest for 
summer (28%, June–August); the median 
annual precipitation bias was 65%.

For May–June, with the exception of 
the ECHAM5, all models and the 22-ME 

produce wetter than observed precipitation 
in the eastern half of the SCP. In particular, 
the CSIRO model produces well more 
than double the observed precipitation 
in the eastern half of the SCP. For July–
September, the differences between models 
and observations are even more pronounced, 
with most models showing greater than 
observed precipitation in the eastern half of 
the SCP and less than observed precipitation 
in the western half of the SCP. Similar to the 
spring season, the CSIRO model produces 
double the observed summer precipitation 
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Figure 5. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean annual temperature 
(°C). See Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in the IPCC Fourth 
Assessment Report data set (Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994).

in the eastern half of the SCP; as mentioned 
above, the CSIRO model does not produce 
a strong seasonal cycle, and overestimates 
precipitation in every single month (Figure 4). 
The NCAR model produces conditions drier 
than observed over the entire SCP domain. 
A study by Lin et al. (2008) determined 
that most of the AR4 models overestimate 
precipitation in the core monsoon region and 
fail to show the monsoon retreat.  

In the section above, we described the 
biases in the models and their general 
correspondence with the seasonal cycles 
of temperature and precipitation, as well 
as the spatial distribution of precipitation 
in the SCP. As mentioned in the Data and 
Methods section, the monthly bias between 
the GCM and observed estimates is removed 
independently at each grid cell. We assume 
that each model’s bias, based on simulations, 
remains consistent in projections of future 
conditions; thus correcting this bias should 
yield more reasonable projected values. 

Nevertheless, it is valuable to reflect on 
model bias when interpreting the downscaled 
projections presented in the next section.

Results: 
Model projections for the 

Southern Colorado Plateau
Projections for the SCP all show increasing 
temperatures after 1980 (Figure 5). When 
the 22 model projections are averaged 
together (22-ME), the temperature increase 
appears to be nearly monotonic, reaching 
2.2°C above the observed average in the 
2030s, and 4.0°C above the observed average 
by the end of the century. Individual models 
exhibit considerable multi-year variability 
within the upward trends in temperature. 
With the exception of the CSIRO model, 
which projects a considerably lower tem-
perature increase of 2.3°C by the end of 
the century, individual models selected for 
this study show increases comparable to the 
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Figure 6. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean annual precipitation 
(mm). See Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in the IPCC Fourth 
Assessment Report data set (Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994).

22-ME. HAD projects the greatest annual 
temperature increases, reaching 5.4°C above 
the observed average by 2080. 

Seasonal temperature projections (not 
shown) exhibit slightly higher rates of 
increase for the arid foresummer and 
summer seasons than for the cool season. 
The 22-ME projection for the SCP warm 
seasons reaches 2.5°C above the observed 
average in the 2030s, and 4.7°C higher 
than observed average values by the end 
of the century. November–March seasonal 
temperature projections reach 1.9°C above 
the observed average by 2040, and 3.6°C 
above the average by the end of the century. 
In all seasons, the CSIRO shows lower 
temperature increases than the other models. 
The HAD projects much higher winter 
temperature increases than the other models 
(6.0°C higher than average by the end of the 
century) and, probably due to its exceed-
ingly high projection of July–September 
precipitation, less than the 22-ME mean 
increase during the summer. The NCAR, 

which characterizes the SCP as having a 
Mediterranean seasonal precipitation cycle 
for 1950–1999, projects the greatest summer 
season temperature increases (4.8°C by the 
end of the century). Timbal et al. (2008) 
found the CSIRO model the least sensitive 
(2.11°C) and the ECHAM5 most sensitive 
(3.69°C) models when comparing the global 
temperature sensitivity of 10 AR4 GCMs 
modeling the A1B scenario for the twenty-
first century. The HAD was not among the 
models tested, but similar to this study, 
CNRM temperature sensitivity was roughly 
in the middle (2.81°C). 

SCP precipitation projections show 
a wide range of possibilities, and few 
coherent trends. This is not surprising, and 
is consistent with the CCSP (2008) and 
IPCC (2007) statements that AOGCMs 
are often not reliable for simulating sub-
continental scale precipitation. The 22-ME 
projection suggests a slight decline (6.5%) 
in annual precipitation for the Colorado 
Plateau (Figure 6). Most of the GCMs we 
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Figure 7. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean November–March total 
precipitation (mm). See Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in the 
IPCC Fourth Assessment Report data set (Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994).

selected project annual precipitation below 
the observed 1950–1999 average for most of 
the twenty-first century. Most models show 
decade-scale variations, with few pluvials 
of the magnitude seen during the twentieth 
century. HAD, however, projects higher than 
observed mean SCP precipitation for most 
of the twenty-first century, due to several 
decade-scale winter pluvials, and an overall 
increase in summer precipitation, averaging 
50% above observed after 2040 (Figures 
6–9). SCP November–March precipitation 
projections indicate great variability between 
models and no strong trends (Figure 7); the 
22-ME projects a slight decline in winter 
precipitation of about 5% during the course 
of the century. 

SCP May–June precipitation projections 
agree on mostly below-observed-average 
precipitation during the course of the 
twenty-first century, with some substantial 
differences in multi-decade variability and 
the magnitude of declining arid foresummer 
precipitation (Figure 8). In particular, the 

22-ME declines throughout the century, 
averaging about 75% of climatology during 
the last decades of the century. The CNRM 
projects the greatest decline in SCP May–
June precipitation (47.8%, with an average 
of 50% lower than climatology for the last 
three decades of the century). The CSIRO 
projects consistently below-average SCP 
May–June precipitation, reaching about 25% 
below climatology by the last few decades of 
the century (Figure 8). 

SCP July–September precipitation pro-
jections also indicate great variability 
between models and no clear trends; the 
22-ME projects a slight increase in summer 
precipitation during the course of the cen-
tury, modulated by multi-decadal variability 
(Figure 9). The HAD model shows a clear 
and dramatic increase in SCP summer 
precipitation after 2020, with regional totals 
far in excess of observations. On the other 
hand, the ECHAM5 model projects mostly 
below-observed-average SCP summer pre-
cipitation during the twenty-first century. 
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Figure 8. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean May–June total 
precipitation (mm). See Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in the 
IPCC Fourth Assessment Report data set (Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994).

Figure 9. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean July–September total 
precipitation (mm). See Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in the 
IPCC Fourth Assessment Report data set (Meehl et al. 2007). Observed data: PRISM 4 km (Daly et al. 1994).
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Figure 10. Southern Colorado Plateau GCM 
projected mean July–September total precipitation 
(mm), 2050. Lower left: 22-Model ensemble; 
Upper left: HAD; Upper right: ECHAM. See Table 1 
for GCM acronyms. 

In this study, the two top-ranking GCMs, 
based on their skill in simulating observed-
average precipitation in the West (HAD 
and ECHAM5, Table 1), project radically 
different precipitation changes in the 
mid-century example considered; this is 
particularly the case for summer precipitation 

(Figure 10; Table 4). For mid-century July–
September precipitation, the HAD projects 
a 30% increase for the Colorado Plateau area, 
whereas the ECHAM5 projects a comparable 
decrease for the western three-fourths of 
the domain (Table 4). For May–June mid-
century precipitation (Table 4), the two
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Figure 11. Southern Colorado Plateau GCM 
projected mean November–March total 
precipitation (mm), 2050. Lower left: 22-Model 
ensemble; Upper left: HAD; Upper right: ECHAM. 
See Table 1 for GCM acronyms. 

models show greater agreement with each 
other, with prominent drying in the western 
two-thirds of the domain. The two models 
project a slight increase in May–June 
precipitation for the eastern part of the SCP 
domain, in contrast to the 22-ME projection. 

For November–March mid-century pro-
jections, similarly, the two models show 
a slight increase in precipitation for much 
of the SCP, while the 22-model ensemble 
projects a slight decrease in the southern half 
of the SCP (Figure 11; Table 4). 

38



Garfin, Eischeid, Lenart, and others

Discussion
Model Selection and Vegetation Modeling

The fact that two GCMs included in this 
study captured the global extremes of tem-
perature sensitivity as tested by Timbal et 
al. (2008) suggests that our model-selection 
process succeeded in bracketing a range of 
temperature increases, which is important 
for modeling potential changes in vegetation 
distribution. In all seasonal precipitation 
projections, the ensemble projection falls 
about midway between the projections by the 
selected models, suggesting the five selected 

models are showing variability similar to 
the full set of 22 models. (N.B.: Results 
from a separate analysis, using the ensemble 
mean of the five highest ranking models 
[Table 1], do not differ dramatically from 
the major findings of the analysis presented 
herein). As with temperature sensitivity, 
the selected models span the full range of 
precipitation projections, which suits the 
goal of the selection process in capturing the 
range of possibilities for bracketing potential 
vegetation responses. 

The approach used here should bracket the 
inputs for future vegetation change in much 

Table 4. Qualitative assessment of precipitation projections for mid-century (2050) are compared to 
observations (1950–1999) for the Southern Colorado Plateau (SCP; see Figure 1). Each bold outlined 
box represents the SCP, and each quadrant of a bold outlined box represents one quadrant of the domain, 
corresponding to Figure 1 (clockwise from left, NW NE, SE, SW). Sign indicates the direction of 
projection; boldness indicates the magnitude of the projection.  + large increase; + increase; – decrease; 
— large decrease. 

Model Winter PPT 
(Nov-Mar)

Spring PPT 
(May-Jun)

Summer PPT 
(Jul-Sep)

22-Model Ensemble
+ + — – + +

– – — – + +

UKMO-HADGEM1
+ + – – + +

+ – – – + +

MPI-ECHAM5
+ + – – — –

– – — – — –

CSIRO-MK3
+ + – – – –

+ + — – – –

CNRM-CM3
– – — — + –

– – — — + –

NCAR-CCSM3
– – — – + +

– – – – + +
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the same way as would a sensitivity analysis, 
although the results contain no information 
on the likelihood of a particular outcome. 
For instance, a sensitivity analysis might 
involve using all 22 models and Monte Carlo 
simulation or similar resampling approach 
to develop a suite of statistically robust 
projections of temperature and precipitation 
values for every month this century for 
input into a study of potential vegetation 
change (sensu Frey and Patil 2002). In the 
absence of that computationally extensive 
effort, multiple AOGCMs in ensembles can 
be used to provide more robust estimates 
of the mean climate state of the future, 
while projections from individual models 
can be used to provide estimates of annual 
variability and to consider the potential 
impacts if outliers become reality. Exploring 
a range of possibilities, using both climate 
and vegetation models, could help resource 
managers who are interested in developing 
adaptation plans that are robust to many 
possible futures (CCSP 2009, Dessai 2009), 
including those extreme possibilities that lie 
at the tails of probability distributions—which 
may have a small probability of occurrence, 
but a high probability of causing massive 
impact if realized.

Implications for the 
Southern Colorado Plateau

Based on the results described above, 
the Southern Colorado Plateau annual 
temperatures are projected to increase by 
1.5° to 3.6°C by mid-century (22-ME = 
2.9°C), and by 2.53° to 5.4°C by the end of 
the century (22-ME = 4.0°C), with annual 
temperatures exceeding the 1950–1999 
range of variability by the 2030s. Annual 
precipitation changes are less clear. A 
conservative estimate, using the 22-model 
ensemble average, indicates that SCP annual 
precipitation may decrease by 6% by the 
end of the century. The clearest indication 
is that SCP May–June arid foresummer 
precipitation is likely to decline, by 11 

to 45% (conservatively, 25%). Though a 
small fraction of annual precipitation falls 
during the arid foresummer, temperatures 
during this time of year may be implicated 
in massive forest mortality (Breshears et 
al. 2005, Weiss et al. 2009 [in press]).  The 
majority of twenty-first century precipitation 
variations do not consistently exceed the 
range of historic variability. 

The aforementioned results are con-
sistent with IPCC AR4 projections, and 
with studies that have examined projections 
for northern California (Dettinger 2005) 
and the Upper Colorado River Basin 
(Christensen and Lettenmaier 2007). The 
hydroclimatic implications of increasing 
temperatures coupled with precipitation 
variability dominated by interannual and 
decadal change, but lacking trend, are well 
known. These include decreasing snowpack 
(Mote et al. 2005, Rauscher et al. 2008), 
early snowmelt (Stewart et al. 2004, 2005, 
2009), an increased fraction of liquid 
winter precipitation (Knowles et al. 2006), 
decreased runoff (Milly et al. 2005, Ellis et 
al. 2008), and increased evapotranspiration 
(Hamlet et al. 2007). 

The downscaling approach used in this 
study does not preserve within-month 
variability; consequently, ephemeral 
daily time-scale events such as flood-
producing intense rains, frosts, extreme 
daily temperatures, and wilt-inducing hot, 
dry episodes are not captured. Studies by 
Diffenbaugh et al. (2005), using regional 
climate models, and Meehl et al. (2004) show 
that projected increases in mean temperature 
across North America are associated with 
the aforementioned phenomena—all of 
which have strong effects on vegetation. 
In particular, temperature-limited growth 
processes and the combination of increased 
temperatures and soil moisture deficits can 
affect widespread tree mortality and treeline 
conifer species distribution (e.g., Adams et 
al. 2009, van Mantgem et al. 2009, Schrag 
et al. 2008). Moreover, Weiss et al. (2009 
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[in press]) demonstrate that increased late 
spring temperatures and drying, consistent 
facets of the projections used in this study, 
increase evapotranspirational demand and 
vegetation moisture stress.

The approach used in this study did preserve 
annual and multidecadal climate variability, 
which can be important to vegetation changes. 
The use of individual model projections 
allows a more robust simulation of time-
series annual and multidecadal climate 
fluctuations for vegetation modeling than 
the ensemble mean, though the statistical 
characteristics of multi-model ensembles are 
more robust for examining trends and mean 
values for specified time periods (Pierce et 
al. 2009). Annual and seasonal variability 
can influence many ecological processes 
that can affect species distribution, including 
seedling germination and survival, herbivore 
pressure, pollinator phenology, and wildfire 
frequency and extent.  For example, dry 
wildfire seasons that follow relatively wet 
years can be associated with more area-
burned than dry seasons following dry years 
in some cases (Swetnam and Betancourt 
1998). 

Conclusions
In this study, we statistically downscaled 
selected IPCC AR4 GCMs for the western 
United States. Our statistical downscaling 
method rapidly, and at little cost, provided 
simulations of future climate at a spatial 
scale acceptable for input to process-based 
landscape-scale vegetation models. GCMs 
were selected for their simulation of western 
U.S. precipitation, and for characteristics 
that would produce a range of future climatic 
conditions to drive vegetation change sim-
ulation models for the Southern Colorado 
Plateau. Our evaluation of selected models, 
based on their simulation of the seasonal 
cycle of precipitation and spatial correlation 
between GCMs and observed precipitation, 
revealed that all overestimate annual SCP 
precipitation, and that few match the observed 

SCP seasonal cycle of precipitation. Models 
better estimated the seasonal cycle of SCP 
temperatures, but several models exhibited 
biases toward warmer than observed summer 
temperatures and cooler than observed winter 
temperatures. The HAD model displayed 
the closest match with historic precipitation 
observations, but some of the projections 
from HAD, notably summer precipitation, 
are well beyond the edge of the envelope of 
projections of other models. 

Projections of future temperature and 
precipitation, based on individual models and 
a 22-model ensemble mean, show excellent 
agreement with regard to projecting tem-
perature increases for the SCP; however, 
differences in magnitude between GCMs 
spanned more than 3°C in each season, and for 
annual temperature. For future precipitation, 
the most important results are (1) the models 
show only slight downward trends in annual 
and winter precipitation and no trend in fall 
and summer, and (2) the selected models 
show a strong downward trend in May–June 
precipitation. In combination with increasing 
temperatures, lack of moisture during this 
time of year could increase the likelihood of 
massive forest mortality events, such as the 
die-off of Colorado Plateau conifers in the 
early part of the twenty-first century. 

Our analysis demonstrated that the 
models selected for vegetation analysis 
produce substantially greater variability than 
ensembles (an obvious result) and, in this 
case, a rich array of variability and potential 
future climates. The approach used here lends 
itself to a relatively inexpensive version of 
a sensitivity analysis, in that ecologists can 
compare the effects on vegetation given 
the range of projections available. Recent 
research shows that using comprehensive 
sets of metrics to choose a set of “best 
models” does not necessarily result in better 
projections, but rather that including more 
models increases the likelihood of producing 
robust projections (Pierce et al. 2009)—
when projections rely on estimates of mean 
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quantities. 
One prospect for future research is to 

use regional climate model simulations 
to downscale GCM projections and retain 
fine-scale dynamical processes (e.g., Dif-
fenbaugh et al. 2005). In the meantime, 
the approach used here, bracketing the 
ensemble GCMs results with plausible, but 
different, individual projections is one that 
can be applied to robust decision-making 
approaches advocated by some decision 
scientists (e.g., CCSP 2009).  The use of 
statistically downscaled GCM projections 
can provide a starting point for considering 
the range of vegetation conditions resource 
managers might face in the near future and 
by the end of the century. 
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